@hodfords/nestjs-grpc-helper
nestjs-grpc-helper simplifies gRPC integration in NestJS, allowing seamless communication between services. It enables easy setup of gRPC clients and servers, and supports building SDK packages that any service can import and use, ensuring consistent API interaction across your microservices architecture.
Installation π€β
Install the nestjs-grpc-helper
package with:
npm install @hodfords/nestjs-grpc-helper --save
Next, automatically generate the proto file and include it in main.ts before starting the application:
import { generateProtoService } from '@hodfords/nestjs-grpc-helper';
generateProtoService(camelCase(env.APP_NAME), env.ROOT_PATH + '/../');
Usage πβ
Creating microservicesβ
Create microservices using the @GrpcMicroservice
decorator, similar to how you would use a Controller. Ensure that the response adheres to the nestjs-response rules:
@GrpcMicroservice()
export class UserMicroservice {
constructor(private userService: UserService) {}
@GrpcAction('Get user by id')
@ResponseModel(UserResponse)
findUserById(@GrpcValue() dto: GetUserByIdDto): Promise<UserEntity> {
return this.userService.findUserById(dto.userId);
}
}
Any Typeβ
You can use any type if fixed types are not an option. However, since itβs passed as JSON, the performance may not be as optimal as with binary. Consider using binary if performance is a concern.
@Property({ type: 'any', required: false })
@AnyType()
data: any;
Create SDKβ
To generate a TypeScript SDK for your gRPC services, you can use the make-sdk
command. This command will automatically generate the necessary proto files and package them into a JavaScript SDK.
You also need the following configuration in your sdk-config.json file:
{
"name": "sdkName",
"packageName": "@hodfords/package-name",
"format": true,
"build": true,
"output": "sdk",
"outputBuild": "sdkBuild",
"removeOutput": true,
"addAllowDecorator": true,
"tsconfig": {
"extends": "./tsconfig.json",
"compilerOptions": {
"outDir": "sdkBuild"
},
"include": ["sdk"]
}
}
Details of the configuration:
Field | Description |
---|---|
name | Name of the SDK |
packageName | Name of the package |
format | Format the generated code |
build | Build the generated code |
output | Output directory for the generated code |
outputBuild | Output directory for the built code |
removeOutput | Remove the output directory |
addAllowDecorator | Add the allow decorator, need class-validator package |
tsconfig | TypeScript configuration |
To generate the SDK, run the following command:
npm run wz-command make-sdk
What this command doesβ
This command will:
- Collect all request and response types: It gathers all
@GrpcValue
request and response types from your project. - Generate proto file: Automatically generates the necessary proto files based on the collected types.
- Create JavaScript Package: Packages the generated code into a JavaScript SDK. The SDK will be published using the name and version specified in your package.json, making it available for other services to import and use. The arguments, response structure, and method names remain consistent with the definitions in your gRPC service, ensuring seamless integration and functionality across services.
SDK usageβ
After publishing the SDK, other services can easily integrate it. Hereβs an example of how to use the generated SDK
-
Import the sdk package
-
Register the microservice module: Configure the microservice in
AppModule
with the appropriate gRPC URL and timeout settings.UserModule.register({
url: env.GRPC_URL,
timeout: 5000
}); -
Use the SDK in another service: Import the SDK and use it to interact with your gRPC services.
export class OtherService {
constructor(private userMicroservice: UserMicroservice) {}
async doTask(userId: string): Promise<void> {
const user = await this.userMicroservice.findUserById({ id: userId });
// Process user information as needed
}
}
In this example, OtherService
uses the UserMicroservice
class from the SDK to call the findUserById
method.
Mock responseβ
To effectively generate and handle mock data in your application, you can use the @MockMethod
, @MockSample
, and @MockNested
decorators.
Generate dynamic data with @MockMethod
β
Use @MockMethod
to apply Faker methods for generating random values.
For example, to create a random string of 10 characters
@Property({ type: String, required: false })
@MockMethod('faker.datatype.string', [10])
@IsString()
name: string;
Set fixed values with @MockSample
β
If you need to set a fixed value for a property, use the @MockSample
decorator. This is useful for enumerations or other predefined values.
For example, to set a fixed user type
@Property({
type: String,
enum: UserTypeEnum,
enumName: 'UserTypeEnum'
})
@MockSample(UserTypeEnum.STANDARD)
@IsEnum(UserTypeEnum)
type: UserTypeEnum;
Generate nested dataβ
Use @MockNested
to generate mock data for nested objects or arrays of nested objects.
For example, to create an array of 5 nested objects
@Property({ type: UserResponse, isArray: true })
@IsArray()
@ValidateNested()
@Type(() => UserResponse)
@MockNested(5)
users: UserResponse[];
Document for GRPCβ
You can go to http://xyz/microservice-documents
to check and try to call the gRPC method
MicroserviceDocumentModule.register({
isEnable: true,
prefix: <app-prefix>,
packageName: camelCase(<package-name>),
clientOptions: { ...microserviceGrpcConfig, customClass: CustomGrpcClient, transport: undefined }
})
License πβ
This project is licensed under the MIT License